organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Luiz Everson da Silva,^{a,b} Antonio Carlos Joussef,^a Sabine Foro^b* and Boris Schmidt^b

^aDepartamento de Química–UFSC, 88040-900 Florianópolis, SC, Brazil, and ^bClemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study T = 299 KMean σ (C–C) = 0.007 Å R factor = 0.044 wR factor = 0.122 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(5,7-Dibromo-8-quinolyl)-3,5-difluorobenzene-sulfonamide

In the title compound, $C_{21}H_{10}Br_2F_4N_2O_4S$, the quinoline ring system, carrying two Br atoms, is essentially planar. The torsion angles about the N-S bonds connecting the quinoline ring to the aromatic rings are 84.0 (3) and 120.8 (3)°. Intermolecular C-H···O hydrogen bonds link molecules into a three-dimensional array.

Comment

The importance of zinc-specific fluorescent probes is particularly apparent in understanding the zinc chemistry of the brain (Fahrni & O'Halloran, 1999). As more roles for non-enzymatic zinc pools become apparent, so has the need for well characterized cell-permeable chemical probes for zinc biology. Various fluorescence-based zinc probes have recently been developed. Zinc chelators based on a quinoline core, such as 6-methoxy-(8-*p*-toluenesulfomido)quinoline (TSQ), are currently the most widely used zinc-activated fluorophores (Frederickson *et al.*, 1987). As part of our ongoing search for fluorophores based on quinolinesulfonamide as potential fluorophores for neurodegenerative diseases (da Silva *et al.*, 2005*a*,*b*,*c*,*d*), we report here the title structure, (I).

The effectively planar quinoline ring system (Fig. 1) carrying the two Br atoms [maximum deviation from the least-squares plane is 0.049 (2) Å for Br2] forms C1-N1-S1-C10 and C1-N1-S2-C16 torsion angles with the aromatic rings of 84.0 (3) and 120.8 (3)°, respectively, indicating non-planarity in the molecule.

Intermolecular $C-H \cdots O$ hydrogen bonds (Table 1) build a three-dimensional network, as shown in the packing diagram (Fig. 2).

Experimental

© 2006 International Union of Crystallography All rights reserved Compound (I) was prepared according to the literature procedure of da Silva *et al.* (2005*e*). Single crystals of (I) suitable for X-ray data

Received 23 May 2006 Accepted 30 May 2006 collection were obtained by recrystallization from a solution of the compound in a dichloromethane-methanol (1:1) mixture (m.p. 443 K).

Z = 4

 $D_{\rm v} = 1.903 {\rm Mg m}^{-3}$

Cu $K\alpha$ radiation

 $\mu = 6.83 \text{ mm}^{-1}$

T = 299 (2) K

 $\begin{aligned} R_{\rm int} &= 0.047\\ \theta_{\rm max} &= 66.9^\circ \end{aligned}$

Prism, light pink

 $0.30 \times 0.20 \times 0.10$ mm

3 standard reflections

frequency: 120 min

intensity decay: 1.0%

 $w = 1/[\sigma^2(F_o^2) + (0.0603P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 3.291P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\text{max}} = 0.73 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.93 \ {\rm e} \ {\rm \AA}^{-3}$

4057 independent reflections

3269 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{array}{l} C_{21}H_{10}Br_{2}F_{4}N_{2}O_{4}S_{2}\\ M_{r}=654.25\\ Monoclinic, P2_{1}/n\\ a=9.758\ (1) \ \text{\AA}\\ b=24.091\ (2) \ \text{\AA}\\ c=9.851\ (1) \ \text{\AA}\\ \beta=99.56\ (1)^{\circ}\\ V=2283.6\ (4) \ \text{\AA}^{3} \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.188$, $T_{max} = 0.456$ (expected range = 0.208-0.505) 4450 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.122$ S = 1.044057 reflections 316 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C19-H19\cdotsO1^{i}\\ C7-H7\cdotsO2^{ii} \end{array}$	0.93	2.40	3.264 (5)	155
	0.93	2.48	3.333 (6)	152

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) -x + 1, -y, -z + 1.

All H atoms were included in the riding-model approximation, with C-H = 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *CAD-4-PC Software* (Enraf–Nonius, 1996); cell refinement: *CAD-4-PC Software*; data reduction: *REDU4* (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor Dr Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

References

Enraf-Nonius (1996). *CAD-4-PC* Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.

Fahrni, C. J. & O'Halloran, T. V. (1999). J. Am. Chem. Soc. 121, 11448–11458.
Frederickson, C. J., Kasarkis, E. J., Ringo, D. & Frederickson, R. E. (1987). J. Neurosci. Methods, 29, 91–103.

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The molecular packing in (I), with hydrogen bonds shown as dashed lines.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Silva, L. E. da, Joussef, A. C., Foro, S. & Schmidt, B. (2005*a*). Acta Cryst. E61, 03435–3436.
- Silva, L. E. da, Joussef, A. C., Foro, S. & Schmidt, B. (2005b). Acta Cryst. E61, 03778–3779.
- Silva, L. E. da, Joussef, A. C., Foro, S. & Schmidt, B. (2005c). Acta Cryst. E61, 03780–3781.
- Silva, L. E. da, Joussef, A. C., Foro, S. & Schmidt, B. (2005*d*). *Acta Cryst.* E61, 03837–3838.
- Silva, L. E. da, Joussef, A. C., Foro, S. & Schmidt, B. (2005e). Acta Cryst. E61, 03782–3783.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (1987). *REDU4*. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.